ISO/IEC JTC 1 SC 42 Artificial Intelligence – Working Group 4

1. General

ID	(leave blank, for internal u	ise)	
Use case name	AI (Swarm Intellige	nce) solution for Attack Detection in IoT Environment	
Application domain	Security		
Deployment model	Hybrid or other (Agent Based Hub-Spoke)		
Status	Prototype		
Scope ¹	Anomaly Based Attack Detection in IoT environment using Swarm Intelligence		
Objective(s) ²	Anomaly Based Attack Detection in IoT environment using Swarm Intelligence Given: AMI (Advanced Metering Infrastructure – Smart Meters in Smart Buildings in Smart Cities. Detect: Detect energy theft / meter tampering by consumer in AMI (Advanced Metering Infrastructure) or hacking attack by an external agent (man in the middle) for edge computing security scenarios with intermitted disconnection, near real-time response without using server or cloud-based analytics.		
Narrative	Short description (not more than 150 words)This is a unique approach to detect attacks in environment using Anomaly Based Attack Det using Swarm Intelligence methods. This is a H to detect energy theft scenario in Smart Meter Theft problem varies from 2% in developed co 35% in developing countries. This is complime traditional AI or other static rule-based analysi heavily dependent on analysis of huge amoun on centralized cloud infrastructure. This soluti simple, nimble and can be run on low powered Nodes) for near real-time, low latency, low pow compute, small storage Mist / Edge Computing		
	Complete description	 Introduction to Anomaly Based Attack Detection using Swarm Intelligence Motivation World-wide statistics shows there will be IoT install based of 12.86 billion units in the consumer segment by 2020. In Smart city industry, smart security is expected to account for 13.5 percent of global smart city market. There will be more than 1 billion devices installed in smart homes. 	

¹ The scope defines the intended area of applicability, limits, and audience.
² The intention of the system; what is to be accomplished?; who/what will benefit?.

•	India is planning 100 Smart cities to be developed
	in next 5 years, and security is of paramount
	importance. Securing Advanced metering
	Infrastructure (AMI) will be key component for
	securing smart city infrastructure.

- Important aspect of securing AMI is securing the Smart Energy meters and detecting attacks on these smart meters.
- While there are many traditional solutions for anomaly and intrusion-based detection based on static preset rules / policies, these solutions are not effective in detecting future attacks that are already not known. A more robust and more secure security solution to detect attacks in edge network is essential. Hence a new innovative approach of using Swarm Intelligence along with Anomaly based Detection has been a technology choice to solve this problem in a unique way.

Problem Statement

Detect energy theft / meter tampering by consumer in AMI (Advanced Metering Infrastructure) or hacking attack by an external agent (man in the middle) for edge computing security scenarios with intermitted disconnection, near real-time response without using server or cloud-based analytics.

Current situation

There are many cloud based centralized solutions available using static rules / policies configured which can detect existing known attack only. Processing in centralized cloud involves transferring data from sensors / actuator to cloud which in itself is a concern in terms of privacy, security, regulations & compliance for some key industry verticals.

Solution Approach

Swarm Intelligence is a specific branch of AI. A new innovative approach using swarm intelligence (AI) based solution for attack detection. Used collective behavior of decentralized self-organizing swarm of nodes with simple computational rules, interacting locally.

Result: Simple collective algorithms for detection of man in the middle attacks on data / network. The following Anomaly based attack detection algorithms

The following Anomaly based attack detection algorithms were used

- 1. Moving average based
- 2. Mahalanobis distance based
- 3. Entropy based

		se: Attack detection of attacks AMI – Smart network.
	2. Attack	y Theft by consumer. launched by external entity (hacker) using say ne-middle attack.
	attack de Smart M	ogy: Swarm Intelligence & Anomaly Based etection using energy consumption data from eter to detect attacks using consensus-based detection algorithms.
	C N N N L N b N b N b N b N b N b N b N b N b N N b N N b N N b N N b N N b N N N N N N N N N N N N N	A Steps: Each Smart meter node reads its Energy Consumption data lode shares Energy Consumption data with its eighboring nodes lode computes anomaly index based on Anomaly Detection algorithm leighboring nodes detect anomalous node(s) ased on Anomaly index by consensus leighboring nodes raise alarm indicating attacked compromised node lotify alarm to back end host. Display monitoring status on host UI.
Stakeholders ³	End users of Smart Metering	, Utility Companies
Stakeholders' assets, values ⁴	Competitiveness, trustworthi	ness, safety, privacy

³ Stakeholder are those that can affect or be affected by the AI system in the scenario; e.g., organizations, customers, 3rd parties, end users, community, environment, negative influencers, bad actors, etc.

⁴ Stakeholders' assets and values that are at stake with potential risk of being compromised by the AI system deployment – e.g., competitiveness, reputation, trustworthiness, fair treatment, safety, privacy, stability, etc.

System's threats & vulnerabilities⁵	Challenges to acco	ountability				
	ID	Name	Description	Reference to mentioned use case objectives		
Key performance indicators (KPIs)	1	Recommendation	System can be used to detect even unknown attacks in IoT Environment especially for real-time or near real-time scenarios	use-case for AMI – Smart Metering with innovative approach		
	2	Improve accuracy	We found the accuracy of the model to be reasonably good	Improve accuracy		
	Task(s)	Inference				
	Method(s) ⁶	Machine Learning, Statistics, Heuristics, Anomaly Detection (Distance / Density based).				
	Hardware ⁷	IoT Nodes (like Raspberry PI, Micro-Controllers, Edge Devices, Cloud etc.				
AI features						
	Topology ⁸	Agent based hub-spoke model. Anomaly Detection in peer-to-peer mesh network.				
	Terms and concepts used ⁹	Swarm Intelligence Metering Infrastruc	e, Anomaly Detection ture).	n, AMI (Advanced		
Standardization opportunities/ requirements	Standardization of	use of Swarm Intelli	gence for specific us	se case scenarios		
	The problem is cha		cenarios - large am	ount of data needs		
Challenges and issues	 Varied data set for different scenarios - large amount of data need to be pre-processed to arrive at operation threshold parameters to be used for detection in real-time. IoT (Edge) Nodes Configuration to suite specific environments The Swarm Intelligence System (SIS) involves a swarm of devices. It should be possible to easily configure the entire swarm for different network environments and locations. Solution: Many reusable modules for Logging, Debugging and 					
		in through XML has				

⁵ Threats and vulnerabilities can compromise the assets and values above - e.g., different sources of bias, incorrect AI system use, new security threats, challenges to accountability, new privacy threats (hidden patterns), etc.

⁶ AI method(s)/framework(s) used in development.

⁷ Hardware system used in development and deployment.

⁸ Topology of the deployment network architecture.

⁹ Terms and concepts used here should be consistent with those defined by Working Group 1 (AWI 22989 and AWI 23053) or to be recommended for inclusion.

	binary re-use without having to change any code to suit a new ne environment.			
	 Flexible to reuse / customize solution for different use-cases / scenarios and scalability The platform needs to be able to provide facilities for different algorithms for anomaly detection to be plugged in with minimum modification, recoding, recompilation. 			
	Solution: Completely dynamically pluggable Algorithm binaries can be developed that conforms to defined interface Specifications, which gives flexibility to try out new algorithms, without needing to change existing code or re-compile. Use of Swarm Intelligence ensures very less localized communication that is required. Furthermore, the Swarm Intelligence System communication capability also addresses throttling of network traffic because of multi-threading / queuing capability built in.			
Societal Concerns ¹⁰		Accuracy of Solution. Fraud (Anomaly Detection) usually incurs a false positive alarm issue.		
	SDGs ¹¹ to be achieved Responsible consumption and production			

URL: http://www.undp.org/content/undp/en/home/sustainable-development-goals.html

¹⁰ To be inserted.

¹¹ The Sustainable Development Goals (SDGs), also known as the Global Goals, are a collection of 17 global goals set by the United Nations General Assembly. SDGs are a universal call to action to end poverty, protect the planet and ensure that all people enjoy peace and prosperity.

Data (optional)

Data characteristics			
Description	Energy consumption data collected from smart meters.		
Source ¹²	 3 years of dataset from smart meters downloaded from publicly available data source. Meter Data Sets received from IIT-Delhi. Sample data collected from Smart Meter setup in the Creative Lab (C-Lab) in Samsung. Analysis & Recommendations on AMI (Advanced metering infrastructure) and Smart Metering scenarios from many research papers. Various online sources on application of Swarm Intelligence as a technology for solving complex problems using simple steps. 		
Type ¹³	Structured Data		
Volume (size)	Multi-year Energy Consumption data from smart meters collected at the rate of 2 entries per hour 48 entries in a day; 17520 entries in a vear.		
Velocity ¹⁴	Batch, near-real time.		
Variety ¹⁵	Single source. Similar data from multiple sources of smart meters.		
Variability (rate of change) ¹⁶	Static. Datasets vary based on geography, season etc. as energy consumption varies based on these factors.		
Quality ¹⁷	Contains some noise. Better quality after pre-processing.		

¹² Origin of data, which could be from customers, instruments, IoT, web, surveys, commercial activity, simulations, etc.

¹³ Structured/unstructured text, images, voices, gene sequences, numbers, composite: time-series, graph-structures, etc.

¹⁴ The rate of flow at which the data is created, stored, analysed, or visualized. Could be in real time.

¹⁵ Domains and types of data employed including formats, logical models, timescales, and semantics. Could be from multiple databases.

¹⁶ Changes in data rate, format/structure, semantics, and/or quality.

¹⁷ Completeness and accuracy of the data with respect to semantic content as well as syntax of the data (such as presence of missing fields or incorrect values).

Process scenario (optional)

	Scenario conditions							
No.Scenario nameScenario descriptionTriggering eventPre- condition18Post-condition19								

¹⁸ Describes which condition(s) should have been met before this scenario happens.

¹⁹ Describes which condition(s) should prevail after this scenario happens. The post-condition may also define "success" or "failure" conditions

Training (optional)

Scenario name	Training				
Step No.	Event ²⁰	Name of process/Activity ²¹	Primary actor	Description of process/activity	Requirement

Specification of training data	
--------------------------------	--

 $^{^{20}}$ The event that triggers the step. This might be completion of the previous event. 21 Action verbs should be used when naming activity.

Evaluation (optional)

Scenario name	Evaluation				
Step No.	Event ²²	Name of process/Activity ²³	Primary actor	Description of process/activity	Requirement

Input of evaluation	
Output of evaluation	

 $^{^{\}rm 22}$ The event that triggers the step. This might be completion of the previous event.

²³ Action verbs should be used when naming activity.

Execution (optional)

Scenario name	Execution				
Step No.	Event ²⁴	Name of process/Activity ²⁵	Primary actor	Description of process/activity	Requirement

Input of Execution	
Output of Execution	

²⁴ The event that triggers the step. This might be completion of the previous event.

²⁵ Action verbs should be used when naming activity.

Retraining (optional)

Scenario name	Retraining						
Step No.	Event ²⁶	Name of process/Activity ²⁷	Primary actor	Description of process/activity	Requirement		
Specification of retraining							

Specification of retraining	
data	

 $^{^{26}}$ The event that triggers the step. This might be completion of the previous event. 27 Action verbs should be used when naming activity.

References

References								
No.	Туре	Reference	Status	Impact on use case	Originator/organization	Link		
1	Paper	Energy Theft Detection- AMI	published	High	TSINGHUA SCIENCE AND TECHNOLOGY	https://ieeexplore. ieee.org/docum ent/6787363/		
2	Paper	Intrusion Detection - AMI	published	High	IEEE University of Illinois	https://ieeexplore. ieee.org/docum ent/5622068/		
3	Paper	EPPA	published	High	IEEE University of Waterloo, Waterloo	https://ieeexplore. ieee.org/docum ent/6165271/		
4	Report	Quantifyin g the Extent of Energy Theft	published	Medium	City of Cape Town, SARPA	https://www.smart energy.com/wpco ntent/uploads/De on%20Louw_ 0.pdf		
5	website	About Swarm Intelligenc e	Available Online	High	TechFerry	http://www.techfer ry.com/article s/swarm- intelligence.html		
6								
						l		

Acceptable Reference Sources of Use Cases

- Peer-reviewed scientific/technical publications on AI applications (e.g. [1]).
 Patent documents describing AI solutions (e.g. [2], [3]).

- Technical reports or presentations by renowned AI experts (e.g. [4])
- High quality company whitepapers and presentations
- Publicly accessible sources with sufficient detail

This list is not exhaustive. Other credible sources may be acceptable as well.

Examples of credible sources:

- [1] B. Du Boulay. "Artificial Intelligence as an Effective Classroom Assistant". IEEE Intelligent Systems, V 31, p.76–81. 2016.
- [2] S. Hong. "Artificial intelligence audio apparatus and operation method thereof". N US 9,948,764, Available at: https://patents.google.com/patent/US20150120618A1/en. 2018.
- [3] M.R. Sumner, B.J. Newendorp and R.M. Orr. "Structured dictation using intelligent automated assistants". N US 9,865,280, 2018.
- [4] J. Hendler, S. Ellis, K. McGuire, N. Negedley, A. Weinstock, M. Klawonn and D. Burns. "WATSON@RPI, Technical Project Review".

URL: https://www.slideshare.net/jahendler/watson-summer-review82013final. 2013.